a. 流量按周的规律分布,工作日的流量较高,周末的流量比较低,但是上图中5月2日和4月1日是周一,流量也非常低,观察日历发现这两天为五一和清明假期,依然是休息日,所以流量不高。属于正常现象。 b. 3月21日到4月17日到流量图中,工作日到流量一般都维持在2400左右,而观察4月18日到5月15日到图,发现流量从4月19日下滑开始,很少突破2000,也就是流量在近一个月有明显下滑。原因可能是对手购买了竞价排名、自己的seo做的不好等等。问题发现,还要根据实际情况进一步分析具体原因。 一般来说,流量以周为单位,周期性分布的情况是比较多的,将视角拉长,一次性多看几个周的数据,便于发现问题。将一段时间内的数据与历史数据进行对比,也有助于问题的发现。 除上图中对流量异常的简单监控外,可以对流量进行进一步分解,如下图所示,通过图表联动,观察具体渠道或者业务的流量情况,从而完成对问题的追踪定位,例如通过进一步分析发现,4月中旬开始的流量下降主要出现在pc端,那么可以进一步缩小问题的范围。便于问题的解决。